

Комплексная среда сквозного проектирования электронных устройств

Руководство пользователя

Скругление треков Январь, 2022

Внимание!

Права на данный документ в полном объёме принадлежат компании «ЭРЕМЕКС» и защищены законодательством Российской Федерации об авторском праве и международными договорами.

Использование данного документа (как полностью, так и в части) в какой-либо форме, такое как: воспроизведение, модификация (в том числе перевод на другой язык), распространение (в том числе в переводе), копирование (заимствование) в любой форме, передача форме третьим лицам, – возможны только с предварительного письменного разрешения компании «ЭРЕМЕКС».

За незаконное использование данного документа (как полностью, так и частично), включая его копирование и распространение, нарушитель несет гражданскую, административную или уголовную ответственность в соответствии с действующим законодательством.

Компания «ЭРЕМЕКС» оставляет за собой право изменить содержание данного документа в любое время без предварительного уведомления. Данный документ предназначен для продвинутого пользователя ПК, знакомого с поведением и механизмами операционной системы Windows, уверенно владеющего инструментарием операционной системы. Последнюю версию документа можно получить в сети Интернет по ссылке: https://www.eremex.ru/knowleage-base/delta-design/docs/.

Компания «ЭРЕМЕКС» не несёт ответственности за содержание, качество, актуальность и достоверность материалов, права на которые принадлежат другим правообладателям. Обозначения ЭРЕМЕКС, EREMEX, Delta Design, TopoR, SimOne являются товарными знаками компании «ЭРЕМЕКС».

Остальные упомянутые в документе торговые марки являются собственностью их законных владельцев.

В случае возникновения вопросов по использованию программ Delta Design, TopoR, SimOne, пожалуйста, обращайтесь: Форум компании «ЭРЕМЕКС»:<u>www.eremex.ru/society/forum/</u>

Техническая поддержка

E-mail: <u>support@eremex.ru</u> Skype: supporteremex

Отдел продаж

Тел. +7 (495) 232-18-64 E-mail: <u>info@eremex.ru</u> E-mail: <u>sales@eremex.ru</u>

Добро пожаловать!

Компания «ЭРЕМЕКС» благодарит Вас за приобретение системы Delta Design и надеется, что она будет удобным и полезным инструментом в Вашей проектной деятельности.

Система Delta Design является интегрированной средой, обеспечивающей средствами автоматизации сквозной цикл проектирования электронных устройств, включая:

- Формирование базы данных радиоэлектронных компонентов, ее сопровождение и поддержание в актуальном состоянии;

- Проектирование принципиальных электрических схем;

- SPICE моделирование работы аналоговых устройств;
- Разработка конструкций печатных плат;

- Размещение электронных компонентов на наружных слоях печатной платы и проектирование сети электрических соединений (печатных проводников, межслойных переходов) в соответствии с заданной электрической схемой и правилами проектирования структуры печатного монтажа;

- Выпуск конструкторской документации в соответствии с ГОСТ;

- Выпуск производственной документации, в том числе необходимой для автоматизированных производственных линий;

- Подготовка данных для составления перечня закупаемых изделий и материалов, необходимых для изготовления изделия.

Мы уверены, что Вы сделали правильный выбор, начав сотрудничество с компанией «ЭРЕМЕКС».

Требования к аппаратным и программным средствам

Система Delta Design предназначена для использования на персональных компьютерах, работающих под управлением следующих версий операционных систем:

- Microsoft Windows 7 SP1+ Patch (KB976932), Windows 8.1, Windows 10.

На компьютере также должны быть установлены следующие программные средства:

- Platform Update Patch (KB2670838) для Windows 7.

Конфигурация рабочего места для использования Delta Design 3.0

Минимальные требования:

- Поддерживается только 64-разрядная версия ОС.

- Процессор от 2 ядер и выше тактовой частотой от 2.5Ггц

- Оперативная память от 8Gb.

- Монитор с разрешением FullHD (1920х1080) и размером диагонали 24" с IPS или VA матрицей.

Для комфортной работы рекомендуется:

- 4-х или 8-ми ядерный процессор с тактовой частотой от 3.5Ггц.

- Требуемый размер оперативной памяти зависит от размера проектов, размера библиотек и числа одновременно открытых проектов. Рекомендуется от 16Гб оперативной памяти. Для построения реалистичных 3D моделей больших печатных плат может потребоваться 32Гб и более оперативной памяти. Не рекомендуется использование файла подкачки, поскольку это существенно снижает производительность системы.

- Для быстрого открытия и сохранения проектов рекомендуется SSD диск с объёмом, достаточным для хранения системы Delta Design и всех данных Рекомендуется выделенный SSD диск от 256Гб (для версий Stantard и Professional).

- Желательно дискретная видеокарта с объёмом видеопамяти от ЗГб.

- 2 монитора с разрешением 1920x1080 и размером диагонали 24" или 1 монитор с разрешением WQHD (2560x1440) с размером диагонали 32". Матрица с IPS или VA. Размер монитора должен соответствовать его разрешению, чтобы комфортно работать без масштабирования изображения, т.е. в режиме 100% (96DPI). Delta Design не поддерживает масштабирование интерфейса.

Примечание! В минимальной конфигурации возможность построения реалистичной 3D модели большой печатной платы не гарантируется!

Конфигурация рабочего места должна быть сбалансированной, поэтому применение 4К монитора требует лучшей видеокарты, большего объёма оперативной памяти и более мощного процессора.

Техническая поддержка и сопровождение

Важно! Техническая поддержка оказывается только пользователям, прошедшим курс обучения. Подробные сведения о курсе обучения могут быть получены по адресу в интернете https://www.eremex.ru/learning-center/

При возникновении вопросов или проблем, связанных с использованием Delta Design рекомендуется следующая последовательность действий:

- Ознакомиться с документацией (руководством пользователя); <u>https://www.eremex.ru/knowleage-base/delta-design/docs/</u>

- Ознакомиться с информацией, содержащейся на сайте в разделе «База знаний», содержащей ответы на часто задаваемые вопросы; https://www.eremex.ru/knowleage-base/

Ознакомиться с существующими разделами форума. Также имеется возможность задать вопрос на форуме <u>https://www.eremex.ru/society/forum/,</u> если интересующая Вас тема ранее не освещалась.

Совет! Если перечисленные источники не содержат рекомендаций по разрешению возникшей проблемы, обратитесь в техническую поддержку. Подробную информацию о возникшей проблеме, действиях пользователя, приведших к ней, и информацию о программно-аппаратной конфигурации используемого компьютера, направить по адресу support@eremex.ru.

Содержание

Скругление треков

1	Общие сведения	7
2	Режимы инструмента	8
2.1	Скругление по заданному радиусу	8
2.2	Скругление до произвольного радиуса	10
2.3	Скругление вершин всего трека	11
2.4	Скругление по заданному вектору	11
3	Построение скругления между выбранными смежными сегментами	12
4	Редактирование скругления	14
5	Уделение скругления	17
		19

Скругление трека представляет собой построение сопряжения дугой между смежными сегментами одного трека. Применение инструмента доступно в Редакторе плат и только на сигнальных слоях платы.

1 Общие сведения

Инструмент «Скругление треков» применяется постфактум на вершинах уже размещенных треков. Радиус скругления задается в панели «Свойства», пункт «Радиус (к)».

Важно! В панели «Свойства» возможно задать максимальное значение радиуса – ограничение сверху для значенияе радиуса скругления, которое будет применено там, где это допустимо. В вершинах, где невозможно применить введенное значение, система автоматически рассчитает и применит допустимый радиус скругления.

Вызов инструмента доступен из панели «Плата» > инструмент «Скругление треков», а также из главного меню > пункт «Скругление треков» раздела «Инструменты», см. <u>Рис. 1</u>. Для вызова инструмента также имеется возможность задать горячую клавишу.

Рис. 1 Вызов функции скругления треков

После активации и наведения курсора на выбранную область система отобразит вид допустимого скругления.

После применения инструмента точные параметры скругления доступны для просмотра в панели «Свойства», поле «Сопряжение», см. <u>Рис. 2</u>.

😭 Свойства	0	2
BUS_A	(Трек)	
Общие	A	٦.
Имя цепи	BUS_A	•
Слой	SIGNAL_TOP	
Ширина	0,3	
Сужение	нет	
Длина трека	23,4412	
Сопряжение	R: 4,5MM k=15	
Общая длина зауженных участков	0	
Сигналы	~	•
Частичная длина	25,3749мм (149,9пс)	
Настройки	~	
Зафиксировано		
Выделен	1 объект	
😭 Свойства 🏾 🌲 Слои 🔋 Пр	авила	

Рис. 2 Отображение свойств примененного скругления вершины трека

Примечание! Для просмотра параметров скругления предварительно выберите необходимую область.

Клик мыши по выбранной вершине фиксирует ранее отображенное допустимое ее скругление.

2 Режимы инструмента

У инструмента четыре режима работы:

- 1. Скругление по заданному радиусу.
- 2. Скругление до произвольного радиуса.
- 3. Скругление вершин всего трека.
- 4. Скругление по заданному вектору.

Примечание! Для возможности ввода нового значения радиуса скругления в панели «Свойства» инструмент «Скругление треков» должен быть активным.

2.1 Скругление по заданному радиусу

Скругление по заданному радиусу предполагает точечное применение инструмента.

Как скруглить трек в данном режиме:

 В панели «Свойства» в поле «Радиус (к)» введите значение (максимальное значение радиуса или ограничение сверху), которое будет взято системой как желаемый (эталонный) радиус скругления вершины трека.

Важно! Минимально допустимое значение радиуса для ввода в поле «Радиус (к)» ровно 0,5. При вводе значения меньшего чем 0,5, система автоматически изменит его.

Примечание! Указанное пользователем значение в поле «Радиус (к)» будет взято как приоритетное для применения в выбранной вершине, однако, при невозможности применения указанного радиуса система автоматически подберет и применит допустимое.

3. Наведите курсор на вершину, в которой необходимо применить инструмент. Система автоматически отобразит измененный вид трека, который будет получен после применения инструмента, см. <u>Рис. 3</u>.

Рис. 3 Отображение (допустимого) скругления вершины трека

Примечание! Если система не обнаружит ограничения для применения заданного в панели «Свойства» радиуса скругления, то будет применено именно введенное значение. Если ограничения есть – система выполнит скругление, автоматически, подобрав допустимое значение.

4. Зафиксируйте скругление нажатием левой кнопки мыши.

Примечание! После применения инструмента «Скругление треков» он остается активным.

2.2 Скругление до произвольного радиуса

Данный режим схож с режимом «<u>Скругление по заданному радиусу</u>». Главное отличие – в выбранную вершину можно применить заданный радиус и после – варьировать. Для этого:

- 1. Активируйте инструмент «Скругление треков».
- 2. Введите значение радиуса в панели «Свойства».
- 3. Выберите вершину и примените инструмент, фиксируя скругление, но не отпуская кнопку мыши.
- 4. Переместите курсор, см. <u>Рис. 4</u>.

Рис. 4 Выбор радиуса скругления в момент применения инструмента

5. Отпустите кнопку в моменте, где требуемое скругление будет получено.

Установка флага в поле «Отталкивать» в панели «Свойства» (см. <u>Рис. 5</u>) позволяет изменять радиус скругления вершин, как выбранного трека, так и вершин, расположенных на других треках по направлению смещения курсора.

😤 Свойства		— 4
Инструме	нт (Скругление трек	ов)
Общие		~
Радиус (к)	5	
Отталкивать		4
		3

Рис. 5 Опция «Отталкивать» при применении скругления

Примечание! Для возможности активации режима расталкивания в панели «Свойства» инструмент «Скругление треков» должен быть активным.

2.3 Скругление вершин всего трека

Для применения инструмента ко всему треку:

- 1. Выберите весь трек двойным кликом на сегменте трека или кликом по сегменту трека и нажатием кнопки «Пробел».
- 2. Активируйте инструмент.

Скругление будет применено ко всем вершинам трека.

Важно! При таком использовании инструмента радиус скругления будет взят из предыдущей сессии работы с инструментом.

2.4 Скругление по заданному вектору

Функционал инструмента позволяет осуществить скругление вершин, попадающих под задаваемый вектор.

Примечание! Вершины должны располагаться на разных треках. Две вершины одного трека скруглены не будут.

Для выполнения скругления по заданному вектору:

- 1. Вызовите инструмент «Скругление треков».
- 2. Зафиксируйте начальную точку вектора нажатием мыши.
- 3. Переместите курсор, не отпуская кнопку мыши, см. Рис. 6.

Рис. 6 Прокладка вектора

Вершины, принадлежащие отличным трекам, попадающие под проводимый вектор, будут скруглены.

4. Отпустите кнопку мыши.

Все вершины, попавшие под размещенный вектор, будут скруглены, а скругление зафиксировано в момент, когда будет разжата кнопка мыши.

Важно! При скруглении по вектору вершины треков, попадающие под размещаемый вектор, системой дробятся на группы, где эталонная группа – это группа, к которой можно и требуется применить заданное в панели «Свойства» эталонное значение. В то время как к другим вершинам, согласно присвоенным им группам, применяются значения близкие к эталонному, но в пределах допустимых (в зависимости от имеющихся для конкретной вершины ограничений по ее скруглению).

Примечание! Инструмент применим только для текущего слоя.

3 Построение скругления между выбранными смежными сегментами

Скругление достягается построением сопряжения дугой в вершине между смежными сегментами одного трека.

Для применения механизма скругления в вершинах для выбранных смежных сегментов трека:

- Liene: M1_EN SIGNAL_TOP
- 1. Выберите сегменты трека, Рис. 7.

Рис. 7 Выбор смежных сегментов

2. Примените инструмент «Скругление треков», см. Рис. 8.

Рис. 8 Применение инструмента к выбранным сегментам

Скругление будет применено в вершину, расположенную между выбранными сегментами, <u>Рис. 9</u>.

Рис. 9 Отображение примененного скругления в вершине между выбранными смежными сегментами

Важно! Радиус скругления будет взят из предыдущей сессии работы с инструментом.

4 Редактирование скругления

После применения определенного скругления и при отсутствии прочих ограничений, уже примененный радиус можно изменять.

К примеру, в одну из вершин уже было применено скругление, значение которого в панели «Свойства» ровно 3. Но в силу отсутствия явных ограничений, может быть применено и большее скругление.

Для применения к уже скругленной вершине инструмента с бОльшим значением радиуса скругления:

- 1. Активируйте инструмент.
- 2. В панели «Свойства» замените ранее введенное значение радиуса скругления из предыдущей сессии работы с инструментом.
- 3. Деактивируйте инструмент.
- 4. Выберите вершину и активируйте инструмент повторно.

Для изменения радиуса скругления уже ранее скругленной вершины:

1. Выберите вершину, см. Рис. 10.

2. <u>Не активируя инструмент скругления</u>, начните перемещать курсор с зажатой левой кнопкой мыши, см. <u>Рис. 11</u>.

Рис. 11 Изменение скругления

В виде контура система отобразить оптимальный вид вершины трека без скругления и измененное положение, которое будет получено в момент, когда кнопка мыши будет разжата и скругление применено.

3. Отпустите кнопку мыши. Итоговый вид скругленной вершины будет зафиксирован.

Также у скругленной вершины есть точка редактирования, с помощью которой происходит сброс скругления с последующим изменением геометрии вершины трека.

Для сброса и изменения геометрии выбранной вершины:

1. Выберите точку и зажмите левую кнопку мыши, Рис. 12.

Рис. 12 Выбор точки редактирования

2. Переместите курсор с зажатой кнопкой мыши. Скругление будет сброшено, а геометрия вершины и смежных сегментов трека изменена, <u>Рис. 13</u>.

Рис. 13 Сброс ранее заданного скругления

3. Отпустите кнопку мыши в моменте, когда требуемая геометрия смежных сегментов трека будет достигнута.

При необходимости подкорректируйте геометрию трека. Подробнее см. <u>Редактор печатных плат</u>. <u>Редактирование трека</u>.

Важно! Сброс скругления с последующим изменением геометрии вершины, осуществляемое через точку редактирования. Редактирование становится недоступным при принудительной фиксации области, см. <u>Рис. 14</u>.

🚰 Свойства					
12C_SCL (Tp)				
Общие		^			
Имя цепи	I2C_SCL	-			
Слой	SIGNAL_TOP				
Ширина	0,3				
Сужение	нет				
Длина трека	15,7661				
Сопряжение	R: 6,1557mm k=20,51	9	~		
Общая длина зауженных участ.	0			~//	
Сигналы		^			
Частичная длина	16,5659мм (97,8пс)				
Настройки		^			
Зафиксировано					
Выделен 1 об	ъект	_			
😤 Свойства 🛛 📦 Слои 戻	Правила				
🚰 Свойства 📦 Сло и 戻 Свойства	Правила	-			
😁 Свойства 📦 Слон 🥃 Свойства 12C_SCL (Тр	Правила	-		7	
Свойства Слои Свойства I2C_SCL (Тр Общие	Правила	-			
Свойства Слои Слои Свойства Свойства I2C_SCL (Тр) Общие Имя цели	Правила нек) I2C_SCL				
Свойства Слои Слои Свойства Свойства I2C_SCL (Тр Общие Имя цепи Слой Слой	Правила нек) I2C_SCL SIGNAL_TOP				
Свойства Слои Слои Свойства Свойства I2C_SCL (Тр Общие Имя цепи Слой Ширина	Правила нек) I2C_SCL SIGNAL_TOP 0,3				
Свойства Слои Свойства Свойства I2C_SCL (Тр Общие Имя цепи Слой Ширина Сужение	Правила нек) I2C_SCL SIGNAL_TOP 0,3 нет	-			
Свойства Слои Свойства Свойства I2C_SCL (Тр Свой Имя цепи Слой Ширина Сужение Длина трека	Правила нек) I2C_SCL SIGNAL_TOP 0,3 нет 15,7661				
Свойства Слои Слои Свойства Свойства I2C_SCL (Тр Общие Имя цепи Слой Цирина Сужение Длина трека Сопряжение Сопряжение	Правила I2C_SCL SIGNAL_TOP 0,3 нет 15,7661 R: 6,1557мм k=20.51	-			
Свойства Слои С Свойства Свойства 12С_SCL (Тр 26щие Имя цепи Слой Ширина Сужение Длина трека Сопряжение Общая длина зауженных участ.	Правила нек) I2C_SCL SIGNAL_TOP 0,3 нет 15,7661 R: 6,1557мм k=20,53 0	-			
Свойства Слои С Свойства Свойства 12С_SCL (Тр 26щие Имя цепи Слой Ширина Сужение Длина трека Сопряжение Общая длина зауженных участ 24гналы	Правила I2C_SCL SIGNAL_TOP 0,3 нет 15,7661 R: 6,1557мм k=20,53 0	-			
Свойства Слои С Свойства Свойства 12C_SCL (Тр Общие Имя цепи Слой Ширина Сужение Длина трека Сопряжение Общая длина зауженных участ Сигналы Частичная длина	Правила I2C_SCL SIGNAL_TOP 0,3 нет 15,7661 R: 6,1557мм k=20,51 0 16,5659мм (97,8mc)	-			
Свойства Слои С Слои С Свойства Свойства Свойства I2C_SCL (Тр Общие Имя цепи Слой Ширина Сужение Длина трека Сопряжение Общая длина зауженных участ Сигналы Частичная длина Частичная длина	Правила I2C_SCL SIGNAL_TOP 0,3 нет 15,7661 R: 6,1557мм k=20,51 0 16,5659мм (97,8пс)				
Свойства Слои Слои Свойства Свойства Свойства I2C_SCL (Тр Общие Имя цепи Слой Ширина Сужение Длина трека Сопряжение Общая длина зауженных участ Сигналы Частичная длина Настройки	Правила I2C_SCL SIGNAL_TOP 0,3 нет 15,7661 R: 6,1557мм k=20,51 . 0 16,5659мм (97,8пс)	9			
Свойства Слои Слои Свойства Свойства Свойства I2C_SCL (Тр Общие Имя цепи Слой Ширина Сужение Длина трека Сопряжение Общая длина зауженных участ Сигналы Частичная длина Настройки Зафиксировано	Правила I2C_SCL SIGNAL_TOP 0,3 нет 15,7661 R: 6,1557мм k=20,51 0 16,5659мм (97,8пс)				
Свойства Слои Слои Свойства Свойства Свойства I2C_SCL (Тр Общие Имя цепи Слой Ширина Сужение Длина трека Сопряжение Общая длина зауженных участ Сигналы Частичная длина Настройки Зафиксировано	Правила I2C_SCL SIGNAL_TOP 0,3 нет 15,7661 R: 6,1557мм k=20,51 0 16,5659мм (97,8пс) Бект				

Рис. 14 Применение фиксации области трека

5 Уделение скругления

Скругление удаляется автоматически при значительном изменении геометрии трека с помощью точек редактирования.

Сегмент трека со скруглением можно просто полностью удалить, тем самым отменив его скругление:

1. Выберите скругление на треке, Рис. 15.

Рис. 15 Выбор области скругления

2. Нажмите Delete. Скругление в выбранной вершине будет удалено, <u>Рис. 16</u>.

Рис. 16 Удаление скругления

Компания ЭРЕМЕКС поставила своей задачей создать точную и удобную систему, предназначенную для создания комплексной среды сквозного проектирования электронных устройств, которой и стала система Delta Design.

Мы постарались учесть все возможные алгоритмы и пути решения задач, которые может поставить перед собой наш пользователь, заложив в систему Delta Design наибольшее количество опций, логических ходов, надстроек, расширенный функционал и т.д.

Компания ЭРЕМЕКС вновь благодарит Вас за приобретение системы Delta Design и надеется, что она станет удобным и полезным инструментом в Вашей деятельности.

