Raw TCP/IP interface for 1wIP
Authors: Adam Dunkels, Leon Woestenberg, Christiaan Simons

1wIP provides three Application Program's Interfaces (APIs) for programs
to use for communication with the TCP/IP code:

* low-level "core" / "callback" or "raw" API.

* higher-level "sequential" API.

* BSD-style socket API.

The sequential API provides a way for ordinary, sequential, programs
to use the 1wIP stack. It is quite similar to the BSD socket API. The
model of execution is based on the blocking open-read-write-close
paradigm. Since the TCP/IP stack is event based by nature, the TCP/IP
code and the application program must reside in different execution
contexts (threads).

The socket API is a compatibility API for existing applications,
currently it is built on top of the sequential API. It is meant to
provide all functions needed to run socket API applications running
on other platforms (e.g. unix / windows etc.). However, due to
limitations

in the specification of this API, there might be incompatibilities
that require small modifications of existing programs.

** Threading

1wIP started targeting single-threaded environments. When adding multi-
threading support, instead of making the core thread-safe, another
approach was chosen: there is one main thread running the 1wIP core
(also known as the "tcpip thread"). The raw API may only be used from
this thread! Application threads using the sequential- or socket API
communicate with this main thread through message passing.

As such, the list of functions that may be called from
other threads or an ISR is very limited! Only functions
from these API header files are thread-safe:

- api.h

- netbuf.h

- netdb.h

- netifapi.h

- sockets.h

- sys.h

Additionaly, memory (de-)allocation functions may be
called from multiple threads (not ISR!) with NO SYS=0
since they are protected by SYS LIGHTWEIGHT PROT and/or
semaphores.

Only since 1.3.0, if SYS LIGHTWEIGHT PROT is set to 1
and LWIP ALLOW MEM FREE FROM OTHER CONTEXT is set to 1,
pbuf free() may also be called from another thread or
an ISR (since only then, mem free - for PBUF RAM - may
be called from an ISR: otherwise, the HEAP is only
protected by semaphores).

** The remainder of this document discusses the "raw" API. **

The raw TCP/IP interface allows the application program to integrate
better with the TCP/IP code. Program execution is event based by

having callback functions being called from within the TCP/IP

code. The TCP/IP code and the application program both run in the same
thread. The sequential API has a much higher overhead and is not very

well suited for small systems since it forces a multithreaded paradigm
on the application.

The raw TCP/IP interface is not only faster in terms of code execution
time but is also less memory intensive. The drawback is that program
development is somewhat harder and application programs written for
the raw TCP/IP interface are more difficult to understand. Still, this
is the preferred way of writing applications that should be small in
code size and memory usage.

Both APIs can be used simultaneously by different application
programs. In fact, the sequential API is implemented as an application
program using the raw TCP/IP interface.

-—-— Callbacks

Program execution is driven by callbacks. Each callback is an ordinary
C function that is called from within the TCP/IP code. Every callback
function is passed the current TCP or UDP connection state as an
argument. Also, in order to be able to keep program specific state,
the callback functions are called with a program specified argument
that is independent of the TCP/IP state.

The function for setting the application connection state is:
- void tcp arg(struct tcp pcb *pcb, void *arg)

Specifies the program specific state that should be passed to all
other callback functions. The "pcb" argument is the current TCP
connection control block, and the "arg" argument is the argument
that will be passed to the callbacks.

-—-— TCP connection setup

The functions used for setting up connections is similar to that of
the sequential API and of the BSD socket API. A new TCP connection
identifier (i.e., a protocol control block - PCB) is created with the
tcp new() function. This PCB can then be either set to listen for new
incoming connections or be explicitly connected to another host.

- struct tcp pcb *tcp new(void)

Creates a new connection identifier (PCB). If memory is not
available for creating the new pcb, NULL is returned.

- err t tcp bind(struct tcp pcb *pcb, struct ip addr *ipaddr,
ul6 t port)

Binds the pcb to a local IP address and port number. The IP address
can be specified as IP ADDR ANY in order to bind the connection to

all local IP addresses.

If another connection is bound to the same port, the function will
return ERR USE, otherwise ERR OK is returned.

- struct tcp pcb *tcp listen(struct tcp pcb *pcb)

Commands a pcb to start listening for incoming connections. When an
incoming connection is accepted, the function specified with the
tcp accept () function will be called. The pcb will have to be bound
to a local port with the tcp bind() function.

The tcp listen() function returns a new connection identifier, and
the one passed as an argument to the function will be

deallocated. The reason for this behavior is that less memory is
needed for a connection that is listening, so tcp listen() will
reclaim the memory needed for the original connection and allocate a
new smaller memory block for the listening connection.

tcp listen() may return NULL if no memory was available for the
listening connection. If so, the memory associated with the pcb
passed as an argument to tcp listen() will not be deallocated.

- struct tcp pcb *tcp listen with backlog(struct tcp pcb *pcb, u8 t
backlog)

Same as tcp listen, but limits the number of outstanding connections
in the listen queue to the value specified by the backlog argument.
To use it, your need to set TCP LISTEN BACKLOG=1 in your lwipopts.h.

- void tcp accepted(struct tcp pcb *pcb)

Inform 1lwIP that an incoming connection has been accepted. This would
usually be called from the accept callback. This allows 1lwIP to perform
housekeeping tasks, such as allowing further incoming connections to be
queued in the listen backlog.

- void tcp accept (struct tcp pcb *pcb,
err t (* accept) (void *arg, struct tcp pcb *newpcb,
err t err))

Specified the callback function that should be called when a new
connection arrives on a listening connection.

- err t tcp connect(struct tcp pcb *pcb, struct ip addr *ipaddr,
ul6é t port, err t (* connected) (void *arg,
struct tcp pcb *tpcb,
err t err));

Sets up the pcb to connect to the remote host and sends the
initial SYN segment which opens the connection.

The tcp connect() function returns immediately; it does not wait for
the connection to be properly setup. Instead, it will call the
function specified as the fourth argument (the "connected" argument)
when the connection is established. If the connection could not be
properly established, either because the other host refused the
connection or because the other host didn't answer, the "err"
callback function of this pcb (registered with tcp err, see below)
will be called.

The tcp connect() function can return ERR MEM if no memory is
available for enqueueing the SYN segment. If the SYN indeed was
enqueued successfully, the tcp connect() function returns ERR OK.

--- Sending TCP data

TCP data is sent by enqueueing the data with a call to

tcp write(). When the data is successfully transmitted to the remote
host, the application will be notified with a call to a specified
callback function.

- err t tcp write(struct tcp pcb *pcb, void *dataptr, ul6 t len,
u8 t copy)

Enqueues the data pointed to by the argument dataptr. The length of
the data is passed as the len parameter. The copy argument is either
0 or 1 and indicates whether the new memory should be allocated for
the data to be copied into. If the argument is 0, no new memory
should be allocated and the data should only be referenced by
pointer.

The tcp write() function will fail and return ERR MEM if the length
of the data exceeds the current send buffer size or if the length of
the queue of outgoing segment is larger than the upper limit defined
in lwipopts.h. The number of bytes available in the output queue can
be retrieved with the tcp sndbuf () function.

The proper way to use this function is to call the function with at
most tcp sndbuf () bytes of data. If the function returns ERR MEM,
the application should wait until some of the currently enqueued
data has been successfully received by the other host and try again.

- void tcp sent (struct tcp pcb *pcb,
err t (* sent) (void *arg, struct tcp pcb *tpcb,
ule t len))

Specifies the callback function that should be called when data has
successfully been received (i.e., acknowledged) by the remote

host. The len argument passed to the callback function gives the
amount bytes that was acknowledged by the last acknowledgment.

--- Receiving TCP data

TCP data reception is callback based - an application specified
callback function is called when new data arrives. When the
application has taken the data, it has to call the tcp recved()
function to indicate that TCP can advertise increase the receive
window.

- void tcp recv(struct tcp pcb *pcb,
err t (* recv) (void *arg, struct tcp pcb *tpcb,
struct pbuf *p, err t err))

Sets the callback function that will be called when new data
arrives. The callback function will be passed a NULL pbuf to
indicate that the remote host has closed the connection. If
there are no errors and the callback function is to return
ERR _OK, then it must free the pbuf. Otherwise, it must not
free the pbuf so that 1wIP core code can store it.

- void tcp recved(struct tcp pcb *pcb, ulé t len)

Must be called when the application has received the data. The len
argument indicates the length of the received data.

-—-- Application polling

When a connection is idle (i.e., no data is either transmitted or
received), 1lwIP will repeatedly poll the application by calling a
specified callback function. This can be used either as a watchdog
timer for killing connections that have stayed idle for too long, or
as a method of waiting for memory to become available. For instance,
if a call to tcp write() has failed because memory wasn't available,
the application may use the polling functionality to call tcp write()
again when the connection has been idle for a while.

- void tcp poll(struct tcp pcb *pcb,
err t (* poll) (void *arg, struct tcp pcb *tpcb),
u8 t interval)

Specifies the polling interval and the callback function that should
be called to poll the application. The interval is specified in
number of TCP coarse grained timer shots, which typically occurs
twice a second. An interval of 10 means that the application would
be polled every 5 seconds.

--- Closing and aborting connections
- err t tcp close(struct tcp pcb *pcb)

Closes the connection. The function may return ERR MEM if no memory
was available for closing the connection. If so, the application
should wait and try again either by using the acknowledgment
callback or the polling functionality. If the close succeeds, the
function returns ERR OK.

The pcb is deallocated by the TCP code after a call to tcp close().
- void tcp abort (struct tcp pcb *pcb)

Aborts the connection by sending a RST (reset) segment to the remote
host. The pcb is deallocated. This function never fails.

ATTENTION: When calling this from one of the TCP callbacks, make
sure you always return ERR ABRT (and never return ERR ABRT otherwise
or you will risk accessing deallocated memory or memory leaks!

If a connection is aborted because of an error, the application is
alerted of this event by the err callback. Errors that might abort a
connection are when there is a shortage of memory. The callback
function to be called is set using the tcp err() function.

- void tcp err(struct tcp pcb *pcb, void (* err) (void *arg,
err t err))

The error callback function does not get the pcb passed to it as a
parameter since the pcb may already have been deallocated.

--- Lower layer TCP interface

TCP provides a simple interface to the lower layers of the

system. During system initialization, the function tcp init() has
to be called before any other TCP function is called. When the system

is running, the two timer functions tcp fasttmr () and tcp slowtmr ()
must be called with regular intervals. The tcp fasttmr() should be
called every TCP_FAST INTERVAL milliseconds (defined in tcp.h) and
tcp slowtmr () should be called every TCP_SLOW INTERVAL milliseconds.

—-——- UDP interface

The UDP interface is similar to that of TCP, but due to the lower
level of complexity of UDP, the interface is significantly simpler.

- struct udp pcb *udp new(void)

Creates a new UDP pcb which can be used for UDP communication. The
pcb is not active until it has either been bound to a local address
or connected to a remote address.

- void udp_ remove (struct udp pcb *pcb)
Removes and deallocates the pcb.

- err_t udp bind(struct udp pcb *pcb, struct ip addr *ipaddr,
ul6 t port)

Binds the pcb to a local address. The IP-address argument "ipaddr"
can be IP ADDR ANY to indicate that it should listen to any local IP
address. The function currently always return ERR OK.

- err t udp connect (struct udp pcb *pcb, struct ip addr *ipaddr,
ul6 t port)

Sets the remote end of the pcb. This function does not generate any
network traffic, but only set the remote address of the pcb.

- err t udp disconnect(struct udp pcb *pcb)

Remove the remote end of the pcb. This function does not generate
any network traffic, but only removes the remote address of the pcb.

- err t udp_ send(struct udp pcb *pcb, struct pbuf *p)
Sends the pbuf p. The pbuf is not deallocated.

- void udp recv(struct udp pcb *pcb,
void (* recv) (void *arg, struct udp pcb *upcb,
struct pbuf *p,
struct ip addr *addr,
ul6 t port),
void *recv_arg)

Specifies a callback function that should be called when a UDP
datagram is received.

--—- System initalization

A truly complete and generic sequence for initializing the lwip stack
cannot be given because it depends on the build configuration
(lwipopts.h)

and additional initializations for your runtime environment (e.g.
timers) .

We can give you some idea on how to proceed when using the raw API.
We assume a configuration using a single Ethernet netif and the
UDP and TCP transport layers, IPv4 and the DHCP client.
Call these functions in the order of appearance:
- stats _init ()

Clears the structure where runtime statistics are gathered.
- sys_init()

Not of much use since we set the NO SYS 1 option in lwipopts.h,
to be called for easy configuration changes.

- mem_init ()
Initializes the dynamic memory heap defined by MEM SIZE.
- memp init ()
Initializes the memory pools defined by MEMP NUM x.
- pbuf init()
Initializes the pbuf memory pool defined by PBUF POOL SIZE.
- etharp init()
Initializes the ARP table and queue.
Note: you must call etharp tmr at a ARP _TMR INTERVAL (5 seconds)
regular interval
after this initialization.
- ip init()
Doesn't do much, it should be called to handle future changes.
- udp_init()
Clears the UDP PCB list.
- tcp init ()
Clears the TCP PCB list and clears some internal TCP timers.
Note: you must call tcp fasttmr() and tcp slowtmr () at the
predefined regular intervals after this initialization.
- netif add(struct netif *netif, struct ip addr *ipaddr,
struct ip addr *netmask, struct ip addr *gw,
void *state, err t (* init) (struct netif *netif),
err t (* input) (struct pbuf *p, struct netif *netif))
Adds your network interface to the netif list. Allocate a struct
netif and pass a pointer to this structure as the first argument.
Give pointers to cleared ip_ addr structures when using DHCP,
or fill them with sane numbers otherwise. The state pointer may be

NULL.

The init function pointer must point to a initialization function for

your ethernet netif interface. The following code illustrates it's use.

err t netif if init (struct netif *netif)
{
ug t i;

for(i = 0; i < ETHARP HWADDR LEN; i++) netif->hwaddr[i] =
some_eth addr[i];
init my eth device();
return ERR OK;
}

For ethernet drivers, the input function pointer must point to the lwip
function ethernet input() declared in "netif/etharp.h". Other drivers
must use ip input() declared in "lwip/ip.h".

- netif set default(struct netif *netif)

Registers the default network interface.
- netif set up(struct netif *netif)

When the netif is fully configured this function must be called.
- dhcp start (struct netif *netif)

Creates a new DHCP client for this interface on the first call.
Note: you must call dhcp fine tmr() and dhcp coarse tmr() at
the predefined regular intervals after starting the client.

You can peek in the netif->dhcp struct for the actual DHCP status.

-—-—- Optimalization hints

The first thing you want to optimize is the lwip standard checksum()
routine from src/core/inet.c. You can override this standard
function with the #define LWIP CHKSUM <your checksum routine>.

There are C examples given in inet.c or you might want to
craft an assembly function for this. RFC1071 is a good
introduction to this subject.

Other significant improvements can be made by supplying
assembly or inline replacements for htons () and htonl ()
if you're using a little-endian architecture.

#define LWIP PLATFORM BYTESWAP 1

#define LWIP_ PLATFORM HTONS (x) <your htons>

#define LWIP_ PLATFORM HTONL (x) <your htonl>

Check your network interface driver if it reads at
a higher speed than the maximum wire-speed. If the
hardware isn't serviced frequently and fast enough
buffer overflows are likely to occur.

E.g. when using the c¢cs8900 driver, call c¢cs8900if service (ethif)

as frequently as possible. When using an RTOS let the ¢s8900 interrupt
wake a high priority task that services your driver using a binary
semaphore or event flag. Some drivers might allow additional tuning

to match your application and network.

For a production release it is recommended to set LWIP STATS to O.
Note that speed performance isn't influenced much by simply setting
high values to the memory options.

For more optimization hints take a look at the 1wIP wiki.
—-—-—- Zero-copy MACs

To achieve zero-copy on transmit, the data passed to the raw API must
remain unchanged until sent. Because the send- (or write-) functions
return

when the packets have been enqueued for sending, data must be kept stable
after that, too.

This implies that PBUF RAM/PBUF POOL pbufs passed to raw-API send
functions
must *not* be reused by the application unless their ref-count is 1.

For no-copy pbufs (PBUF ROM/PBUF REF), data must be kept unchanged, too,
but the stack/driver will/must copy PBUF REF'ed data when enqueueing,
while

PBUF ROM-pbufs are just enqueued (as ROM-data is expected to never
change) .

Also, data passed to tcp write without the copy-flag must not be changed!

Therefore, be careful which type of PBUF you use and if you copy TCP data
or not!

